
Audio Engineering Considerations for a Modern Mixnet

Brett Alexander Preston

October 11, 2023

This work is supported by a grant from the Wau Holland Foundation.

Privacy-enhancing technologies have always faced a challenge in balancing security guarantees with user
experience that would bring people to the service. In the contemporary communication landscape, most
users expect their messengers to allow for some form of audio communication. We would therefore like to meet
that demand without compromising anonymity.

The most ambitious private messengers being built today are those based on modern Mixnet designs. They
introduce padding, in addition to a network of relays, and have to contend with latency. They distinguish
themselves by considering realistic powerful adversaries and endeavoring to protect both the content of the
communication and the metadata. This turns out to be crucial in the case of audio communication, since in
most common implementations the metadata leaks content, so you can’t have one without the other. We will
therefore discuss implementation recommendations from the point of view of audio engineering of adding audio
communication to a Mixnet. We will look at how we can balance efficiency and user experience in this unique
setting while upholding security guarantees.

Contents
1 Content leaks in common encrypted VoIP implementations 2

2 Recommendations for audio encoding and decoding 2
2.1 Audio codecs . 3
2.2 Bitrate . 4
2.3 Bandwidth . 4
2.4 Frame size . 4
2.5 Algorithm complexity . 4

3 Signal processing, noise reduction and equalizing 5

4 Recommendations summary 5

A modern Mixnet typically uses padding in order to mitigate traffic analysis. [1] This means that a constant
amount of traffic is being sent by a user at all times. The amount of traffic it allows for is also an upper limit
to how much data a user can send. It is not realistic to set this limit too high, since it would quickly add up to
a significant drain on a user’s resources. Therefore we should expect any audio communication to either have
to be compressed to a low bitrate, or take a long time to travel through the network, which can make real-time
audio communication impossible. Therefore we will consider non-synchronous push-to-talk messaging as an
important mode of audio communication in this setting.

1

1 Content leaks in common encrypted VoIP implementations
It has been demonstrated that encrypted real-time VoIP communications can produce devastating data leaks
by not accounting for the fact that different phonemes are connected to different bitrates. Already in 2011,
researchers were able to reconstruct sections of conversations from encrypted connections based on packet
traffic patterns alone. [2] Today, the threat is even more dire due to increased prevalence of Machine Learning
and therefore the automation of powerful statistical analysis. [3] And yet popular communication software
does not address this.

One can typically mitigate this problem by either using constant bit-rate encoding, therefore increasing the
overall file size, or opting for push-to-talk messaging instead of real-time communication, where you process
the entire recording. This goes back to the Anonymity Trilemma [4]: to maintain security guarantees, you
have to compromise either on the overhead or on latency. But a Mixnet with padding has already made these
compromises and so it faces these challenges by design.

2 Recommendations for audio encoding and decoding
Encoding and decoding audio in a Mixnet has a unique set of challenges. We are particularly interested in
efficiency, as there may be a strict bandwidth limit, but at the same time we have access to the computing
power of a modern device and modern audio encoding and decoding tricks. We can reasonably expect to deal
with some latency, and depending on the transport-layer protocol used we may have to consider some packet
loss. We can also expect a modern Mixnet to prioritize security and to require its components to use licensing
that supports freedom.

We will assume that padding and/or non-synchronicity allow for an implementation of VBR encoding
without leaking content. We should still keep in mind security risks that come from haphazard implementations
of VBR decoding, as sometimes they might allow for injection of malicious code. We should make sure the
decoder we’re using has been audited. An example of a decoder written with security in mind is Rust-based
Symphonia [5].

The following table is a comparison of file sizes in kBs generated by VBR encoding in various codecs,
starting with a lossless wav file. The cells are clickable, so the reader can verify the sound quality. For the
HTML version of this table, visit https://brettpreston.github.io/mixnet-samples.

Codec Bitrate Band
width Complexity

Deep
voice
(32sec)

Deep
voice +
noise 35
sec

High
Voice

High
voice+noise
49 sec

Generic
rock 51 sec

wav 2930 2990 4560 4330 6620
opus 64 kbps wide 10 304 271 456 390 293
opus 32 kbps wide 10 113 131 170 190 137
opus 16 kbps wide 10 59.1 68.5 89.7 98.4 71.6
opus 12 kbps wide 10 45.4 51.8 69.4 74.7 54.5
opus 12 kbps wide 5 45 50.4 68.4 72.5 53.5
opus 12 kbps narrow 5 49 54.5 76.2 78.6 60.2
opus 6 kbps wide 10 25.9 26.9 41 39.3 30.6
opus 6 kbps wide 5 25.6 26.4 40.1 38.6 30.2
opus 6 kbps narrow 5 25.4 28.2 36.4 40.7 31.2
speex 64 kbps wide 10 165 166 256 242 126
speex 32 kbps wide 10 95.2 109 145 158 108
speex 12 kbps wide 10 36.3 42.4 55.7 51.1 54.3
speex 4 kbps wide 10 22.5 25 34.9 36 35.3
codec2 3200bps default n/a 12.7 14.1 19.9 20.4 15.5
codec2 1200bps default n/a 4.74 f 7.47 f f
codec2 450bps default n/a 2.4 f 3.73 f f

2

https://brettpreston.github.io/mixnet-samples
https://brettpreston.github.io/audio/KnPAudio/wav/deep-voice.wav
https://brettpreston.github.io/audio/KnPAudio/wav/deep-voice-noise.wav
https://brettpreston.github.io/audio/KnPAudio/wav/high-voice.wav
https://brettpreston.github.io/audio/KnPAudio/wav/high-voice-noise.wav
https://brettpreston.github.io/audio/KnPAudio/wav/generic-rock.wav
https://brettpreston.github.io/audio/KnPAudio/opus/64vbr-wide-10cmplx/deep-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/64vbr-wide-10cmplx/deep-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/64vbr-wide-10cmplx/high-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/64vbr-wide-10cmplx/high-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/64vbr-wide-10cmplx/generic-rock.opus
https://brettpreston.github.io/audio/KnPAudio/opus/32vbr-wide-10cmplx/deep-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/32vbr-wide-10cmplx/deep-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/32vbr-wide-10cmplx/high-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/32vbr-wide-10cmplx/high-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/32vbr-wide-10cmplx/generic-rock.opus
https://brettpreston.github.io/audio/KnPAudio/opus/16vbr-wide-10cmplx/deep-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/16vbr-wide-10cmplx/deep-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/16vbr-wide-10cmplx/high-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/16vbr-wide-10cmplx/high-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/16vbr-wide-10cmplx/generic-rock.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-10cmplx/deep-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-10cmplx/deep-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-10cmplx/high-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-10cmplx/high-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-10cmplx/generic-rock.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-5cmplx/deep-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-5cmplx/deep-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-5cmplx/high-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-5cmplx/high-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-wide-5cmplx/generic-rock.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-narrow-5cmplx/deep-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-narrow-5cmplx/deep-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-narrow-5cmplx/high-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-narrow-5cmplx/high-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/12vbr-narrow-5cmplx/generic-rock.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-10cmplx/deep-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-10cmplx/deep-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-10cmplx/high-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-10cmplx/high-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-10cmplx/generic-rock.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-5cmplx/deep-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-5cmplx/deep-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-5cmplx/high-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-5cmplx/high-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-wide-5cmplx/generic-rock.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-narrow-5cmplx/deep-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-narrow-5cmplx/deep-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-narrow-5cmplx/high-voice.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-narrow-5cmplx/high-voice-noise.opus
https://brettpreston.github.io/audio/KnPAudio/opus/6vbr-narrow-5cmplx/generic-rock.opus
https://brettpreston.github.io/audio/KnPAudio/speex/64vbr-wide-10cmplx/deep-voice.spx
https://brettpreston.github.io/audio/KnPAudio/speex/64vbr-wide-10cmplx/deep-voice-noise.spx
https://brettpreston.github.io/audio/KnPAudio/speex/64vbr-wide-10cmplx/high-voice.spx
https://brettpreston.github.io/audio/KnPAudio/speex/64vbr-wide-10cmplx/high-voice-noise.spx
https://brettpreston.github.io/audio/KnPAudio/speex/64vbr-wide-10cmplx/generic-rock.spx
https://brettpreston.github.io/audio/KnPAudio/speex/32vbr-wide-10cmplx/deep-voice.spx
https://brettpreston.github.io/audio/KnPAudio/speex/32vbr-wide-10cmplx/deep-voice-noise.spx
https://brettpreston.github.io/audio/KnPAudio/speex/32vbr-wide-10cmplx/high-voice.spx
https://brettpreston.github.io/audio/KnPAudio/speex/32vbr-wide-10cmplx/high-voice-noise.spx
https://brettpreston.github.io/audio/KnPAudio/speex/32vbr-wide-10cmplx/generic-rock.spx
https://brettpreston.github.io/audio/KnPAudio/speex/12vbr-wide-10cmplx/deep-voice.spx
https://brettpreston.github.io/audio/KnPAudio/speex/12vbr-wide-10cmplx/deep-voice-noise.spx
https://brettpreston.github.io/audio/KnPAudio/speex/12vbr-wide-10cmplx/high-voice.spx
https://brettpreston.github.io/audio/KnPAudio/speex/12vbr-wide-10cmplx/high-voice-noise.spx
https://brettpreston.github.io/audio/KnPAudio/speex/12vbr-wide-10cmplx/generic-rock.spx
https://brettpreston.github.io/audio/KnPAudio/speex/4vbr-wide-10cmplx/deep-voice.spx
https://brettpreston.github.io/audio/KnPAudio/speex/4vbr-wide-10cmplx/deep-voice-noise.spx
https://brettpreston.github.io/audio/KnPAudio/speex/4vbr-wide-10cmplx/high-voice.spx
https://brettpreston.github.io/audio/KnPAudio/speex/4vbr-wide-10cmplx/high-voice-noise.spx
https://brettpreston.github.io/audio/KnPAudio/speex/4vbr-wide-10cmplx/generic-rock.spx
https://brettpreston.github.io/audio/KnPAudio/codec2/deep-voice-3200.c2.flac
https://brettpreston.github.io/audio/KnPAudio/codec2/deep-voice-noise-3200.c2.flac
https://brettpreston.github.io/audio/KnPAudio/codec2/high-voice-3200.c2.flac
https://brettpreston.github.io/audio/KnPAudio/codec2/high-voice-noise-3200.c2.flac
https://brettpreston.github.io/audio/KnPAudio/codec2/generic-rock-3200.c2.flac
https://brettpreston.github.io/audio/KnPAudio/codec2/deep-voice-1200.c2.flac
https://brettpreston.github.io/audio/KnPAudio/codec2/high-voice-1200.c2.flac
https://brettpreston.github.io/audio/KnPAudio/codec2/deep-voice-450.c2.flac
https://brettpreston.github.io/audio/KnPAudio/codec2/high-voice-450.c2.flac

The key takeaways from this table can be summarized as follows. Opus delivers the best quality of the
three codecs, and better file size than Speex, and is the only one that can handle more than speech. With Opus
we observe diminishing returns with quality above 12 kbps. Bandwidth has a small impact on the file size.
Algorithm complexity has negligible impact on the file size, it primarily impacts local processing requirements.
Codec2 delivers very, very small file size but can’t handle noise or music at all. We go into detail on all of
these points below.

2.1 Audio codecs
We have selected audio codecs that can be candidates for use in this setting. They deliver either impressive
sound quality at low bitrates, or good sound quality and impressively low bitrates, and each has different
strengths. Opus and Speex are under a BSD license, and Codec2 under LGPL.

Opus and Speex

By far the most popular codec today, Opus is used in most modern VoIP systems. It is a versatile audio codec
that is known for its high-quality, crisp sound reproduction, suitable for a wide range of applications, including
voice communication and music streaming. It has ready implementations in many programming languages,
including Go [6] and Rust [5]. It is also well documented, simplifying its potential integration into various
projects. [7]

Another fine codec for speech compression is Speex, which was popular in VoIP systems before the rise of
Opus. It delivers clear and bright speech, but is not meant to be used for other sound. There are extensive
resources which compare Opus to Speex [8] [9], and it is clear that Opus is both more efficient and more
versatile.

Codec2

For this special use case of Mixnets, we may also consider Codec2 because it is capable of extremely efficient
encoding. Its efficiency relies heavily on sinusoidal coding and a narrow frequency band, which means that we
quickly lose clarity and some distinguishing features of the original speech recording. The simplified harmonic
content encodes less information per frame compared to the popular codecs.

However, in this particular context both the extremely small file size and the voice masking provided by the
loss of distinguishing features may be desirable. If we were to implement Codec2 but still wanted to improve
clarity, we could consider the following adjustments:

• Implementing a noise filter before encoding. A demonstration of the effect denoising can have on Codec2
can be found in section 3 of this analysis.

• If trade-offs in the codec itself are acceptable, a wider frequency band on the higher end and improved
handling of noise, both in noise reduction and encoding of consonants, would go a long way to improve the
sound quality. Out-of-the-box Codec2 uses a very narrow subset of human voice frequencies and doesn’t
handle consonants well, which means it could have trouble with some consonant-heavy languages. These
adjustments would come at the cost of compression efficiency.

It appears that Codec2 was originally intended for radio broadcast, in which case these shortcomings
would be somewhat mitigated by post processing typically used for radio broadcast.

• As it stands now, we can mitigate the losses after decoding by boosting what little of the higher frequency
range survived. An equalizer is the most resource-efficient way to address this problem.

• Implementing a neural network-based decoder, akin to WaveNet, for frequency "reconstruction." [10]
This is very resource intensive, and so may not feasible on most personal devices. One should also keep
in mind that these tools don’t reconstruct the original voice, they create a clean simulacrum of a human
voice which may not sound like the original speaker.

It should be emphasized that Codec2 is unlikely to provide user experience on par with Opus and so it is only
applicable in a limited set of use cases.

3

2.2 Bitrate
Naturally, we would like to find an optimal point where the bitrate is low and the sound quality is good. As
can be heard in the samples above, as well as quantified in [9], we experience diminishing returns above 12kbps
with Opus when it comes to speech compression. As long as minimizing the file size is a priority, either 12
or 16kbps appears to be a fine choice. While we are encoding speech, it also doesn’t make sense to encode
multiple channels.

The priorities change if we are encoding music - then higher bitrates make a big difference, as can be heard
in the provided samples. If we were planning for music streaming we would also be hoping to allow for (at
least) stereo. This is unlikely to come into play in our use case however, and so we will settle on 12kbps, mono
encoding. The following figure comes from [9].

If we choose Codec2 there is little reason to go below 3200bps, as the quality at lower bitrates is not
competitive in modern VoIP landscape, and recordings with background noise or music result in a jumbled
mess.

2.3 Bandwidth
We should use wide band compression. In most settings it has little impact on the file size, but is a huge gain
in audio quality and clarity.

2.4 Frame size
Encoding with Opus, frames lengths under 20ms at low bit rates have audible distortions as well as frames
sizes over 80ms. This demonstration uses 6VBR wide band, in order to accentuate the distortion: opus-frames.
In practice, this is a lower bitrate than we would use and so the result would sound better.

2.5 Algorithm complexity
The algorithm complexity impacts the processing power required on a device more than it does the file size.
In our use case, where we expect the system to be used on modern devices there is no reason not to opt for
higher complexity, since it’s an easy gain in quality without compromising on the resources that are scarce.
The recommendation is complexity 10, unless we expect to work on older mobile devices with a real-time audio
stream, in which case we may want to choose 5.

4

https://brettpreston.github.io/audio/KnPAudio/opusframes.flac

3 Signal processing, noise reduction and equalizing
Background noise tends to be an issue with voice recordings, we could implement a noise filter with a small
processing footprint, as well as a dynamic range compressor/limiter before encoding the message. This will
improve the likelihood of a clear and appropriately loudness balanced audio message.

Noise reduction is recommended pre-encoding for maximum clarity. State-of-the-art noise suppressors tend
to be based on neural networks, such as [11] [12]. This is somewhat resource intensive, but not out the question
on mobile devices. There is an analysis of XIPH’s efficacy and efficiency at https://jmvalin.ca/demo/rnnoise/.
A demonstration of this process can be found here here.

A potential alternative is an automated Fast Fourier Transform noise suppressor, however, that is likely to
involve extensive customization of available tools.

When it comes to Codec2 at 1200bit/s to 3200bit/s, an EQ boost of several decibels at 3kHz is a simple
and effective way to improve consonant clarity. Noise suppression and equalizing can make a big difference
when making Codec2 viable as demonstrated here. Compare with the original sample here. Without these
adjustments, Codec2 may not meet the quality expectations of today’s users.

4 Recommendations summary
• Before encoding: noise suppression with XIPH or a similar plugin, or a heavily customized Fast Fourier

Transform process.

• In most use cases, encoding with Opus, 12kbps VBR, mono, wide band, complexity 10, frame size 20ms.

If processing power is scarce, complexity 5.

For extreme file compression and a partially masked voice, Codec2 3200bps, "Natural" setting. The
quality in Codec2 could be improved by widening the band on the higher end. Noise suppression is
crucial.

• A security conscious decoder such as [5] or [6].

• After decoding: EQ boost of several decibels at 3kHz, especially with Codec2.

Acknowledgments
Special thanks to EJ Infeld for help with formatting and editing this analysis, as well as providing valuable
context about Mixnets, and to the Wau Holland Foundation for funding this work.

5

https://jmvalin.ca/demo/rnnoise/
https://brettpreston.github.io/audio/KnPAudio/rnnoise-opus-codec2.flac
https://brettpreston.github.io/audio/KnPAudio/voice-denoize-codec2-3kHz-eq-boost.flac
https://brettpreston.github.io/audio/KnPAudio/codec2/deep-voice-noise-3200.c2.flac

References
[1] Ania Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George Danezis. The loopix anonymity

system, 2017.

[2] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and Fabian Monrose. Phonotactic reconstruction
of encrypted voip conversations: Hookt on fon-iks, 2011.

[3] Chenggang Wang, Sean Kennedy, Haipeng Li, King Hudson, Gowtham Atluri, Xuetao Wei, Wenhai Sun,
and Boyang Wang. Fingerprinting encrypted voice traffic on smart speakers with deep learning, 07 2020.

[4] FRL. Anonymity trilemma. https://freedom.cs.purdue.edu/projects/trilemma.html.

[5] Philip Deljanov. Symphonia. https://github.com/pdeljanov/Symphonia, 2022.

[6] Steffen Vogel Egon Elbre, Sean DuBois. Pion. https://github.com/pion/opus, 2023.

[7] IETF. Opus technical details. https://datatracker.ietf.org/doc/html/rfc6716.

[8] Opus. Opus comparison. https://www.opus-codec.org/comparison/.

[9] Anssi Rämö and Henri Toukomaa. Voice quality characterization of ietf opus codec. In Interspeech, 2011.

[10] W. Bastiaan Kleijn, Felicia S. C. Lim, Alejandro Luebs, Jan Skoglund, Florian Stimberg, Quan Wang,
and Thomas C. Walters. Wavenet based low rate speech coding. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 676–680, 2018.

[11] XIPH. Rnnoise. https://github.com/xiph/rnnoise, https://jmvalin.ca/demo/rnnoise/.

[12] Werman. Noise suppression. https://github.com/werman/noise-suppression-for-voice/.

6

https://freedom.cs.purdue.edu/projects/trilemma.html
https://github.com/pdeljanov/Symphonia
https://github.com/pion/opus
https://datatracker.ietf.org/doc/html/rfc6716
https://www.opus-codec.org/comparison/
https://github.com/xiph/rnnoise
https://jmvalin.ca/demo/rnnoise/
https://github.com/werman/noise-suppression-for-voice/

	Content leaks in common encrypted VoIP implementations
	Recommendations for audio encoding and decoding
	Audio codecs
	Bitrate
	Bandwidth
	Frame size
	Algorithm complexity

	Signal processing, noise reduction and equalizing
	Recommendations summary

